Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Neural Comput Appl ; : 1-20, 2021 Aug 12.
Article in English | MEDLINE | ID: covidwho-20241671

ABSTRACT

The coronavirus pandemic has been globally impacting the health and prosperity of people. A persistent increase in the number of positive cases has boost the stress among governments across the globe. There is a need of approach which gives more accurate predictions of outbreak. This paper presents a novel approach called diffusion prediction model for prediction of number of coronavirus cases in four countries: India, France, China and Nepal. Diffusion prediction model works on the diffusion process of the human contact. Model considers two forms of spread: when the spread takes time after infecting one person and when the spread is immediate after infecting one person. It makes the proposed model different over other state-of-the art models. It is giving more accurate results than other state-of-the art models. The proposed diffusion prediction model forecasts the number of new cases expected to occur in next 4 weeks. The model has predicted the number of confirmed cases, recovered cases, deaths and active cases. The model can facilitate government to be well prepared for any abrupt rise in this pandemic. The performance is evaluated in terms of accuracy and error rate and compared with the prediction results of support vector machine, logistic regression model and convolution neural network. The results prove the efficiency of the proposed model.

2.
Comput Math Methods Med ; 2021: 6633755, 2021.
Article in English | MEDLINE | ID: covidwho-1140372

ABSTRACT

AIM: COVID-19 has caused large death tolls all over the world. Accurate diagnosis is of significant importance for early treatment. METHODS: In this study, we proposed a novel PSSPNN model for classification between COVID-19, secondary pulmonary tuberculosis, community-captured pneumonia, and healthy subjects. PSSPNN entails five improvements: we first proposed the n-conv stochastic pooling module. Second, a novel stochastic pooling neural network was proposed. Third, PatchShuffle was introduced as a regularization term. Fourth, an improved multiple-way data augmentation was used. Fifth, Grad-CAM was utilized to interpret our AI model. RESULTS: The 10 runs with random seed on the test set showed our algorithm achieved a microaveraged F1 score of 95.79%. Moreover, our method is better than nine state-of-the-art approaches. CONCLUSION: This proposed PSSPNN will help assist radiologists to make diagnosis more quickly and accurately on COVID-19 cases.


Subject(s)
COVID-19/diagnostic imaging , Community-Acquired Infections/diagnostic imaging , Diagnosis, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Neural Networks, Computer , Pneumonia/diagnostic imaging , Tuberculosis, Pulmonary/diagnostic imaging , Algorithms , COVID-19/complications , Community-Acquired Infections/complications , Databases, Factual , Humans , Medical Informatics , Pneumonia/complications , Radiography, Thoracic , Reproducibility of Results , Retrospective Studies , Software , Stochastic Processes , Tomography, X-Ray Computed , Tuberculosis, Pulmonary/complications
SELECTION OF CITATIONS
SEARCH DETAIL